Involvement of Calcium-Mediated Reactive Oxygen Species in Inductive GRP78 Expression by Geldanamycin in 9L Rat Brain Tumor Cells

نویسندگان

  • Fang-Chun Sun
  • Hsin-Yi Shyu
  • Meng-Shiou Lee
  • Meng-Shiunn Lee
  • Yiu-Kay Lai
چکیده

Treatment with geldanamycin (GA) leads to an increase in [Ca2+]c and the production of reactive oxygen species (ROS) in rat brain tumor 9L RBT cells. GA-exerted calcium signaling was blocked by BAPTA/AM and EGTA. The effect of GA on [Ca2+]c was significantly reduced in the presence of thapsigargin (TG) and ruthenium red (RR). GA-induced GRP78 expression is significantly decreased in the presence of BAPTA/AM, EGTA and RR, suggesting that the calcium influx from the extracellular space and intracellular calcium store oscillations are contributed to by the calcium mobilization and GRP78 expression induced by GA. The induced GRP78 expression is sensitive to added U73122 and Ro-31-8425, pinpointing the involvement of phospholipase C (PLC) and protein kinase C (PKC) in GA-induced endoplasmic reticulum (ER) stress. The antioxidants N-acetylcysteine (NAC), BAPTA/AM, EGTA and H7 also have significant inhibitory effects on ROS generation. Finally, neither H7 nor NAC was able to affect the calcium response elicited by GA. Our results suggest that the causal signaling cascade during GA-inducted GRP78 expression occurs via a pathway that connects PLC to cytoplasmic calcium increase, PKC activation and, then, finally, ROS generation. Our data provides new insights into the influence of GA on ER stress response in 9L RBT cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

17-allylamino-17-demethoxygeldanamycin and MEK1/2 inhibitors kill GI tumor cells via Ca2+-dependent suppression of GRP78/BiP and induction of ceramide and reactive oxygen species.

The present studies determine in greater detail the molecular mechanisms upstream of the CD95 death receptor by which geldanamycin heat shock protein 90 inhibitors and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2) inhibitors interact to kill carcinoma cells. MEK1/2 inhibition enhanced 17-allylamino-17-demethoxygeldanamycin (17AAG) toxicity that was s...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013